Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including a SnSe2 capping layer

Identifieur interne : 000167 ( Main/Repository ); précédent : 000166; suivant : 000168

Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including a SnSe2 capping layer

Auteurs : RBID : Pascal:14-0026972

Descripteurs français

English descriptors

Abstract

Cu2ZnSnSe4 (CZTSe) thin film solar cells have been produced via co-evaporation followed by a high-temperature annealing. In order to reduce the decomposition of the CZTSe, a SnSe2 capping layer has been evaporated onto the absorber prior to the high-temperature treatment. This eliminates the Sn losses due to SnSe evaporation. A solar cell efficiency of 5.1% could be achieved with this method. Moreover, the device does not suffer from high series resistance, and the dominant recombination pathway is situated in the absorber bulk. Finally, different illumination conditions (white light, red light, and yellow light) reveal a strong loss in fill factor if no carriers are generated in the CdS buffer layer. This effect, known as red-kink effect, has also been observed in the closely related Cu(In,Ga)Se2 thin film solar cells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0026972

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Cu
<sub>2</sub>
ZnSnSe
<sub>4</sub>
thin film solar cells produced via co-evaporation and annealing including a SnSe
<sub>2</sub>
capping layer</title>
<author>
<name sortKey="Redinger, Alex" uniqKey="Redinger A">Alex Redinger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Université du Luxembourg, Laboratory for Photovoltaics, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>4422 Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mousel, Marina" uniqKey="Mousel M">Marina Mousel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Université du Luxembourg, Laboratory for Photovoltaics, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>4422 Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Djemour, Rabie" uniqKey="Djemour R">Rabie Djemour</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Université du Luxembourg, Laboratory for Photovoltaics, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>4422 Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="G Tay, Levent" uniqKey="G Tay L">Levent G Tay</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Université du Luxembourg, Laboratory for Photovoltaics, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>4422 Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Valle, Nathalie" uniqKey="Valle N">Nathalie Valle</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Centre de Recherche Public Gabriel Lippmann, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>4422 Belvaux</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Siebentritt, Susanne" uniqKey="Siebentritt S">Susanne Siebentritt</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Université du Luxembourg, Laboratory for Photovoltaics, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
<wicri:noRegion>4422 Belvaux</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0026972</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0026972 INIST</idno>
<idno type="RBID">Pascal:14-0026972</idno>
<idno type="wicri:Area/Main/Corpus">000269</idno>
<idno type="wicri:Area/Main/Repository">000167</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Absorber</term>
<term>Annealing</term>
<term>Buffer layer</term>
<term>Cadmium sulfide</term>
<term>Coatings</term>
<term>Codeposition</term>
<term>Conversion rate</term>
<term>Copper selenides</term>
<term>Fill factor</term>
<term>Gallium selenides</term>
<term>Heat treatment</term>
<term>High temperature</term>
<term>Illumination</term>
<term>Indium selenides</term>
<term>Loss factor</term>
<term>Quaternary compound</term>
<term>Red light</term>
<term>Semiconductor materials</term>
<term>Series resistance</term>
<term>Solar cell</term>
<term>Thin film</term>
<term>Thin film cell</term>
<term>Tin selenides</term>
<term>White light</term>
<term>Yellow light</term>
<term>Zinc selenides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule couche mince</term>
<term>Cellule solaire</term>
<term>Codépôt</term>
<term>Recuit</term>
<term>Haute température</term>
<term>Absorbeur</term>
<term>Matériau absorbant</term>
<term>Traitement thermique</term>
<term>Taux conversion</term>
<term>Résistance série</term>
<term>Eclairement</term>
<term>Lumière blanche</term>
<term>Lumière rouge</term>
<term>Lumière jaune</term>
<term>Indice affaiblissement</term>
<term>Facteur remplissage</term>
<term>Couche tampon</term>
<term>Séléniure d'etain</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de zinc</term>
<term>Revêtement</term>
<term>Sulfure de cadmium</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Couche mince</term>
<term>Semiconducteur</term>
<term>Cu2ZnSnSe4</term>
<term>CdS</term>
<term>Cu(In,Ga)Se2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cu
<sub>2</sub>
ZnSnSe
<sub>4</sub>
(CZTSe) thin film solar cells have been produced via co-evaporation followed by a high-temperature annealing. In order to reduce the decomposition of the CZTSe, a SnSe
<sub>2</sub>
capping layer has been evaporated onto the absorber prior to the high-temperature treatment. This eliminates the Sn losses due to SnSe evaporation. A solar cell efficiency of 5.1% could be achieved with this method. Moreover, the device does not suffer from high series resistance, and the dominant recombination pathway is situated in the absorber bulk. Finally, different illumination conditions (white light, red light, and yellow light) reveal a strong loss in fill factor if no carriers are generated in the CdS buffer layer. This effect, known as red-kink effect, has also been observed in the closely related Cu(In,Ga)Se
<sub>2</sub>
thin film solar cells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Cu
<sub>2</sub>
ZnSnSe
<sub>4</sub>
thin film solar cells produced via co-evaporation and annealing including a SnSe
<sub>2</sub>
capping layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>REDINGER (Alex)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MOUSEL (Marina)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DJEMOUR (Rabie)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GÜTAY (Levent)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VALLE (Nathalie)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SIEBENTRITT (Susanne)</s1>
</fA11>
<fA14 i1="01">
<s1>Université du Luxembourg, Laboratory for Photovoltaics, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Centre de Recherche Public Gabriel Lippmann, 41, rue du Brill</s1>
<s2>4422 Belvaux</s2>
<s3>LUX</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>51-57</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000500724620070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0026972</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Cu
<sub>2</sub>
ZnSnSe
<sub>4</sub>
(CZTSe) thin film solar cells have been produced via co-evaporation followed by a high-temperature annealing. In order to reduce the decomposition of the CZTSe, a SnSe
<sub>2</sub>
capping layer has been evaporated onto the absorber prior to the high-temperature treatment. This eliminates the Sn losses due to SnSe evaporation. A solar cell efficiency of 5.1% could be achieved with this method. Moreover, the device does not suffer from high series resistance, and the dominant recombination pathway is situated in the absorber bulk. Finally, different illumination conditions (white light, red light, and yellow light) reveal a strong loss in fill factor if no carriers are generated in the CdS buffer layer. This effect, known as red-kink effect, has also been observed in the closely related Cu(In,Ga)Se
<sub>2</sub>
thin film solar cells.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cellule couche mince</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Thin film cell</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Célula capa delgada</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Codépôt</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Codeposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Codeposición</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Absorbeur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Absorber</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Absorbente</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Traitement thermique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Heat treatment</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Tratamiento térmico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Résistance série</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Series resistance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Resistencia en serie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Lumière blanche</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>White light</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Luz blanca</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Lumière rouge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Red light</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Luz roja</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Lumière jaune</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Yellow light</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Luz amarilla</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Indice affaiblissement</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Loss factor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indice debilitamiento</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure d'etain</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Tin selenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Séléniure de zinc</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Zinc selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Revêtement</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Coatings</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Revestimiento</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>30</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>30</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>30</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>31</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>31</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>31</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Cu2ZnSnSe4</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000167 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000167 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0026972
   |texte=   Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including a SnSe2 capping layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024